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Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by
physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem
of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been
considered in literature as possible crossover selection strategies. We show for a large class of quality measures
that the best possible probability distribution for selecting individuals in each generation of the algorithm
execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform
probabilities have to be assigned to a group of the individuals with lowest energy in the population but
probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff,
which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The
considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and
linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large
class of algorithms.
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I. INTRODUCTION

The problem of finding the ground state of a complex
system arises in many areas of modern sciences and related
problems of global optimization have an ample number of
applications in engineering and economics as for circuit de-
sign �1�, process planning �2�, and scheduling �3�. In the
realm of physics, such problems occur in the study of sys-
tems such as spin glasses �4�, neural networks �5�, and pro-
tein structure prediction and simulation �6,7�. From the
mathematical point of view, the global minimum in the do-
main of a real-valued function is requested.

Because of the NP completeness �8� of most problems of
this class, there is no hope for deterministic methods which
solve these problems in reasonable running times and hence,
various heuristic methods for a near optimal solution have
been developed, such as simulated annealing �9�, threshold
accepting �10�, particle swarm optimization �11�, or genetic
algorithms �GAs� �12�, which are in the focus of this paper.
A general drawback of most of these methods is that they
have many free parameters to be adjusted by the user and,
even worse, that these methods often require different pa-
rameter setups for different problem domains and instances.
Hence, much research has been done to choose different pa-
rameters possibly optimal �see, e.g., �13–17��.

In the particular case of designing a GA for a certain
given problem, there are many degrees of freedom to be
fixed, but as for the other methods mentioned above, the
choice of certain parameters or operators often relies strongly
on experimental studies and the experience of the program-
mer. Such choices are, e.g., �i� representation of a solution in
the state space as an artificial genome, �ii� choice of a cross-
over operator to form a new population in each iteration, �iii�
choice of a mutation rate, and �iv� choice of a selection
scheme over the individuals of a population for crossover.

Today GAs are in broad successful application to prob-
lems in many different fields �18–23� and excellent experi-
mental results have been obtained. Despite interesting theo-
retical progress in the last years �24–29�, exact proves for
optimal choices of design criteria are still missing. This pa-
per focuses on the last of the design criteria above also called
parent selection. In all variants of GAs, some form of the
selection operator must be present �24�. A wide variety of
selection strategies has been proposed in the literature. In
general, m individuals of the current population of size n
have to be selected for crossover into a mating pool. Indi-
viduals with higher fitness are more likely to receive more
than one copy and less fit individuals are more likely to
receive no copies. In different replacement schemes, the size
of the pool differs. After selecting the mating pool, some
crossover scheme takes individuals from that pool and pro-
duces new outcomes, until the pool is exhausted. No further
structural restrictions are necessary for our considerations
concerning the optimal choice of a selection strategy.

The behavior of the GA very much depends on how indi-
viduals are chosen to go into the mating pool �12�. Examples
are given in Table I. The simplest approach is that the repro-
duction probability of an individual of the population is pro-
portional directly to its fitness �roulette-wheel selection�.
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TABLE I. Comparison of different selection strategies.

Rank of the individuals 1 2 3 4

Raw fitness 50.0 25.0 15.0 10.0

Roulette-wheel 0.5 0.25 0.15 0.1

Windowing 0.6̄ 0.25 0.083̄ 0.0

Exponential ��f +1� 0.365 0.261 0.205 0.169

Linear transformation �2f +1� 0.495 0.25 0.152 0.103

Linear ranking selection 0.4 0.3 0.2 0.1

Binary tournament selection 0.438 0.312 0.188 0.062

Threshold Selecting ��=3� 0.3̄ 0.3̄ 0.3̄ 0.0
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Other approaches scale the original fitness function first for
better performance. Examples are windowing, where the fit-
ness of the worst individual is subtracted from each indi-
vidual fitness before calculating the selection probabilities
f�= f − fw; linear transformation, where a linear function of
the fitness is computed, i.e., f�=c0f +c1; or exponential,
where a scaled fitness function f�= �c0f +c1�c2 is computed
�c0 , c1 and c2 are constants�. Then the probabilities are cho-
sen proportional to the values f�, taking normalization into
account. In linear ranking selection, a linear function over a
fitness ranking of the individuals is applied and in binary
tournament selection two individuals are selected with uni-
form probability in a preselection step and the individual
with better fitness is then submitted to the mating pool.
Sigma truncation, dynamic scaling, or hyperbolic scaling is
also common. The strategy threshold selecting applies rect-
angular distributions with a certain cutoff rank �, as intro-
duced in �30�. Note that the rank � can be different for dif-
ferent individuals which are chosen in the same iteration and
of course also in different iterations. See �12,24,26� for an
overview on different selection schemes.

Table I �12� introduces the different methods for a popu-
lation of four individuals with exemplary fitness values 50,
25, 15, and 10. In Fig. 1 the different selection strategies are
visualized for a larger population of 20 individuals. For a
better readability, the exemplary fitness values of the indi-
viduals have been chosen according to a function, i.e., f�x�
=2x2+x+7 for the xth individual.

Each crossover strategy is reported to have strengths and
weaknesses. In general, the selection strategy has to be cho-
sen such that the population evolves toward “better” overall
fitness. For example, the fitness of the fittest individual in the
final population might be required to be as high as possible.
In Secs. V and VI, it is proven that threshold selecting is
optimal in a certain sense defined below. This generalizes the
results of �30� to a larger class of objective functions. In
threshold selecting, the selection is based on fitness ranks,
and the selection probability on the ranks is rectangular, i.e.,

it includes one or more individual�s� with the highest fitness
value�s� with the same nonvanishing probability but intro-
duces a cutoff rank �, so that all individuals with higher
ranks are selected with probability zero.

II. IDEA IN A NUTSHELL

The proof to show the optimality of threshold selecting
for a large class of objective functions, which is the main
contribution of this paper, is based on the fact that the selec-
tion probability distributions assigning probabilities to
n-ordered objects can be seen as vectors in a n dimensional
space. Special assumptions of the problem structure restrict
the space of possible solutions to a simplex, which is de-
scribed in detail in Sec. IV. Then, due do the linearity of
applicable objective functions on the selection probabilities
as described in Secs. V and VI, the problem reduces to the
task to find the minimum of a linear function on a simplex,
which must be a vertex in the general case by the fundamen-
tal theorem of linear programming. As will be shown, the
vertices are exactly equivalent to the rectangular distribu-
tions mentioned above as threshold selecting.

This proof technique has been already applied to show for
the acceptance rule in Monte Carlo methods, such as simu-
lated annealing �9�, threshold accepting �10�, or Tsallis sta-
tistics �13,14,31�, that threshold accepting is provably a best
possible choice �15�.

Furthermore, the stochastic optimization algorithm ex-
tremal optimization �32� has been investigated �16,17�. Ex-
tremal optimization also works by simulating random walk-
ers as do the methods mentioned before, but it needs a
special structure of the problem under consideration. Every
state is specified by several degrees of freedom, each of
which can be assigned a fitness. Each iteration chooses 1
degree of freedom to be changed based on fitness values. It
has been shown that a rectangular distribution is the best
choice in each iteration of extremal optimization.

III. DEFINITIONS

We consider problems with finite state spaces � of states
���. An energy function E��� describes how desirable ev-
ery single state � is and has to be minimized, i.e., the states
of lower energy are better. Due to the finite state space, there
is only a finite number of possible values for E���. As stated,
in genetic algorithms, it is very common to define a fitness
function f��� where states with lower energy have a higher
fitness because energy has to be minimized. Hence, different
mappings to fulfill this requirement would be possible but
functions as defined by

f��� ª max�E����� � �� − E���

would be a considerable choice here. The energy notation is
more common in physics; hence it is used predominantly in
Secs. III–VII. GAs consider populations �or pools� of states.
If there are n states in a population then each generation is
equivalent to a generalized state vector �ª ��1 ,�2 , . . . ,�n�
��n=� with n finite. A generalized energy function E���
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FIG. 1. Functions of different selection strategies.
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has to be defined for our considerations as well, which is
done by

E��� ª min�E��i��i = 1,2, . . . ,n� . �1�

To obtain low energies, GAs proceed by randomly selecting
a start population and then evolving it by a selection and
subsequent crossover operation. Mutations are also possible,
but of no importance for our considerations. The reason is
that the consecutive application of a crossover operator C
with crossover probability pc and a mutation operator M
with mutation probability pm can be considered as one appli-
cation of a universal operator, i.e.,

� = M�C��,pc�,pm� = �M � C���,pm,pc� ¬ U��� .

The application of U instead of a pure crossover operator C
does not change the reasoning applied later on. In both cases,
there is a rigorously defined probability to obtain a fixed
state � from a given state � if the operator is applied �only
the probability values change if mutation is integrated, which
does not matter for the general setup�. So be aware that de-
spite our focus on crossover, the following considerations
include also operator applications with positive probabilities
for mutations. Another assumption is that we here confine
ourselves to selection steps, where the probability to enter
the mating pool for the crossover operation is based on the
ranks of the population members in a ranking where they are
ordered by their energy value. Later on it gets clear that the
proof covers also the distributions from Table I, which are
not only rank based, because they all satisfy the conditions
�A1� and �A2� regardless of other parameter choices.

The possible mating pools are described by vectors of
chosen ranks r� �Nn

+�m, where Nn
+ denotes the set

�1,2 , . . . ,n� of integers and m denotes the number of chosen
ranks for the crossover step.

For the choice of the m individuals for the crossover step
in the GA, m time-dependent probability distributions di,t, i
=1,2 , . . . ,m are defined over the ranks r, where di,t�r� de-
notes the probability that the individual with rank r is chosen
in time step t as ith element of the mating pool. Given this
structure at time t, exactly m ranks r= �r1 ,r2 , . . . ,rm� are cho-
sen by the GA and hence, m individuals from the current
population according to di,t, i=1,2 , . . . ,m. Technically, each
of the individual members �i of the current population � is
assigned a rank r��i� based on its energy, i.e., the individuals
in a population can be ordered according to their energy
values in a ranking with

r��i� � r�� j� ⇔ E��i� � E�� j� ∀ pairs�i, j� ,

where r��i�, r�� j��Nn
+= �1,2 , . . . ,n�. The following assump-

tions are adopted for the selection probabilities di,t�r�. �A1�
Each step of the algorithm is independent of the former
steps. �A2� In each step t, 1�di,t�1��di,t�2�� ¯ �di,t�n�
�0 holds for i=1,2 , . . . ,m, i.e., it is more probable to select
individuals with lower rank �lower energy� than individuals
with a higher rank �higher energy�. �A3� 	r=1

n di,t�r�=1 for i
=1,2 , . . .m, i.e., the distributions are normalized.

Due to the random nature of the selection process, there is
a time-dependent probability to obtain the mating pool based
on a vector of chosen ranks r= �r1 ,r2 , . . . ,rm�,

�r
S,t = d1,t�r1�d2,t�r2� . . . dm,t�rm� . �2�

In the crossover step, an operator Cr is applied to the
current population �. The operator Cr might not be determin-
istic but determines the fixed probabilities ��r�

C to obtain a
new population ��� from ��� with the chosen ranks r
as intermediate step. For each fixed pair r and �, we have

	
���

��r�
C = 1.

An exemplary crossover procedure could work as follows.
After obtaining a mating pool of m states which are corre-
sponding to the chosen ranks r of the old generalized state �,
m new states are created by recombination of these chosen
states. Including the current n states then there are n+m
states available and n states are kept for the new generation
� applying some standard procedure �e.g., keep the best n of
all n+m states�. In the special case of generation replace-
ment, we have n=m and � is replaced completely by the
states from the recombination step.

One can think of the recombination itself that states from
the mating pool are taken one after another. Each possible
tuple of states for one crossover operation is chosen with the
same probability, i.e., the probability is uniformly distributed
among all possible tuples of desired size in the mating pool.
Most commonly pairs are chosen and for each pair a split
position for one point crossover or more than one split posi-
tion for multipoint crossover procedures are determined—
again uniformly distributed �the proof below is general
enough that also other distributions or procedures are pos-
sible here�.

Combining the selection step with probabilities �r
S,t and

the crossover step with probabilities ��r�
C leads to a transi-

tion probability 	��
t from one population � to the next popu-

lation �. In summary, the dynamics of GAs can be described
as a Markovian random walk in-state space. For the devel-
opment of the probability p�

t to be in state � �which means to
have a certain population in the GA�, the master equation

p�
t = 	

���

	��
t p�

t−1 �3�

is applicable. Here 	��
t is defined to be

	��
t = 	

r��Nn
+�m

��r�
C �r

S,t =
�2�

	
r��Nn

+�m

��r�
C 


i=1

m

di,t�ri� . �4�

In the next step, the dependence of the performance of the
GA on the probability distributions d1,t, d2,t , . . . ,dm,t over the
ranks in the population is investigated and we determine
which choice is an optimal one for these distributions, con-
sidering an optimization run with S steps.

Most commonly, one of the following objectives is used
�15� �here slightly adapted in the notation for GAs�. �O1�
The mean energy of the best individual in the final popula-
tion �mean final energy� should be as low as possible. �O2�
The probability of having a final population containing an
individual with ground state energy should be as large as
possible. �O3� The expected number of obtained populations
during the execution of the algorithm which contain at least
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one ground state individual should be as large a possible.
�O4� The probability of obtaining a population which con-
tains a ground state during the execution of the algorithm
should be as large as possible. �O5� The mean energy of the
best so far obtained individual during the algorithm execu-
tion �mean best so far energy� should be as low as possible.

In practice the objectives �O4� and �O5� are the most
common ones. To optimize according to �O1�, one chooses

g1��� = E��� =
�1�

min�E��i��i = 1,2, . . . ,n� ,

which means essentially that the quality of a population is
assumed to be equivalent to the quality of the best individual
in the population. Here � is assumed to be the final popula-
tion. To optimize according to �O2�, one chooses

g2��� = �0 � if � contains a ground state

1 � otherwise,
�

i.e., only optimal states with ground state energy have objec-
tive values equivalent to zero. The other objectives are de-
scribed in Sec. VI. The objectives �O1� and �O2� are linear in
the final-state probabilities, which is the important fact for
the proof as explained below.

The optimization process consists of a finite number of S
steps �tª1,2 , . . . ,S�. Note that 	��

t is linear in di,t�r� for i
fixed by definition in Eq. �4�. The arguments below apply in
general to any objective function which is linear in the final-
state probabilities p�

S as, e.g., �O1� and �O2�. The state prob-
abilities at time t are considered as vector pt with dim�pt�
= ���¬L and the linear objective function with values g���
for each state ��� as vector g, again with dim�g�=L. If
�·�tr denotes the transpose, the measure of performance is
equivalent to

g�pS� = gtr · pS = 	
���

g���p�
S → min. �5�

IV. SETUP OF A VECTOR SPACE

In the following, the distributions di,t�r�, r=1,2 , . . . ,n, are
considered to be n dimensional vectors di,t with entries dr

i,t

ªdi,t�r�� �0,1�. Assume without loss of generality m−1 of
these distributions di,t, i�1,2 , . . . ,m at time step t, to be
fixed. Only one remaining distribution denoted by dct,t is
open to optimize. The question is then how to choose dct,t

to minimize Eq. �5�. As a consequence of the assumptions
�A2� and �A3�, the region F of feasible vectors dct,t is
defined by the n+1 linear inequalities in �A2� and one linear
equation in �A3�, where the first inequality 1�d1

ct,t follows
from the others. Of the remaining n inequalities, n−1 must
be set to equations to find extreme points �vertices� in
the region F. Letting V denote the set of extreme points of
F, the elements of V are exactly those vectors dct,t which
have the initial sequence of i entries equal to 1 / i followed
by a sequence of n− i entries equal to zeros. Explicitly,
V= �v1 ,v2 , . . . ,vn�, where v1= �1,0 ,0 , . . . ,0�tr, v2
= �1 /2,1 /2,0 ,0 , . . . ,0�tr, vi= �1 / i ,1 / i , . . . ,1 / i ,0 ,0 , . . . ,0�tr,
and vn= �1 /n ,1 /n , . . . ,1 /n�tr. Note that the elements of V are

linearly independent. Then by an argument from �15� F is
exactly the convex hull C�V� of V, which is a simplex �see
Fig. 2�. The equivalence of C�V� and the region F defined by
�A1� to �A3� can be seen as follows. For the lth row of an
arbitrary element,

d = 	
i=1

n

aivi, ∀ i = 1,2, . . . ,n:ai � �0,1�, 	
i=1

n

ai = 1

of C�V� the relation

dl = 	
i=l

n

ai
1

i
= 	

i=l+1

n

ai
1

i
+ al

1

l
= dl+1 + al

1

l
� dl+1,

holds, which means the assumption �A2� is fulfilled. Now
summing up the rows of C�V� gives

	
l=1

n

dl = 	
l=1

n

	
i=l

n

ai
1

i
= 	

l=1

n

lal
1

l
= 	

l=1

n

al = 1,

showing also that �A3� is fulfilled. Thus, C�V��F. Con-
versely, consider an arbitrary point d�F. Since the vertices
vi are linearly independent, they can be used as a basis and d
can be written as a linear combination

d = 	
i=1

n

bivi.

Then, for the lth component dl, this gives

dl = 	
i=l

n

bi
1

i
= dl+1 + bi

1

l
,

which by �A2� implies

dl � dl+1 ⇒ dl − dl+1 = bl
1

l
� 0 ⇒ bl � 0.

Summing up all values dl and using �A3� gives

	
l=1

n

dl = 	
l=1

n

lbl
1

l
= 	

l=1

n

bl = 1 ⇒ bl � 1.

Hence, the constraints bl�0 and bl�1 hold and therefore
d�C�V� for all d�F, i.e., F�C�V�, C�V�=F.

1

1

1

di,t
3

di,t
2

di,t
1

F
FIG. 2. Simplex in three dimensions.

JÖRG LÄSSIG AND KARL HEINZ HOFFMANN PHYSICAL REVIEW E 79, 046702 �2009�

046702-4



V. PROVING OPTIMALITY

In the following, it is proven that threshold selecting is the
best possible choice for each distribution di,t , i=1,2 , . . . ,m
in the time steps t=1,2 , . . . ,S. First the final step S of the
optimization process is considered. The output of the last
step is pS and used to determine the value of the optimality
criterion as in Eq. �5�. In step S, one has to solve the opti-
mization problem in Eq. �5� for the given input pS−1. Using
Eq. �3� one gets

g�pS� = 	
�,���

g���	��
S p�

S−1 → min, �6�

with 	��
S given by Eq. �4�. Note that in this stage, p�

S−1 is
fixed in any case to a value which has been determined by
the first S−1 steps of the algorithm. Now the distributions in
	�,�

S defined by

g�pS� = 	
�,���

g���	��
S p�

S−1

=
�4�

	
�,���

g��� 	
r��Nn

+�m

��r�
C 


i=1

m

di,S�ri��p�
S−1

= 	
�,���

g���dcS,S · h�DS
−�p�

S−1

= dcS,S · 	
�,���

g���h�DS
−�p�

S−1 → min �7�

have to be optimized. Here DS
− denotes the set of distribu-

tions d1,S , d2,S , . . . ,dcS−1,S , dcS+1,S , . . . ,dm,S and h�DS
−� is the

vector which is obtained if dcS,S , cS� �1,2 , . . . ,m� gets fac-
tored out. Obviously this is possible for each distribution di,S

and hence the constant cS can be chosen arbitrarily from
�1,2 , . . . ,m�. This means g�pS� depends only linearly on
each single distribution di,S , i=1,2 , . . . ,m, which selects the
ith individual for crossover. Consequently by the fundamen-
tal theorem of linear optimization, the distributions can be
chosen optimally as vertices v�V. But, because the distri-
butions of the previous steps are not fixed in the current stage
of the proof, the optimal values p�

S−1 are currently unknown.
Hence, all possible combinations of vertices from V are con-
sidered for the distributions di,S , i=1,2 , . . . ,m. These are nm

possible choices. This finishes step S. Defining gS−1���
=	���g���	��

S as a new objective function �this has to be
done in each of the nm search branches independently� and
considering now the step before, i.e., step S−1, one obtains

gtr · pS = 	
�,���

gS−1���	��
S−1p�

S−2 → min. �8�

Obviously the same transformation as above can be applied
to factor out dcS−1,S−1, where cS−1� �1,2 , . . . ,m� and by the
same arguments as above the optimal transition probabilities
are found by taking dcS−1,S−1 to be an element of V. Again this
reasoning is valid for each distribution di,S−1 , i=1,2 , . . . ,m.
For all other steps S−2, S−3, . . . ,1 the same argument
holds as well, i.e., di,t , i=1,2 , . . . ,m are all elements of the
vertex set V. In the last step, the search tree has �nm�S

branches and one of these branches is equivalent to the op-
timal choice of vertices of the complete iterative search pro-

cess of the GA. Equivalently, this process can be also imag-
ined by applying the Bellman principle of dynamic
programming �33�, working the way backward starting with
the last step.

Hence, the proof shows that a rectangular distribution
over the individuals with the lowest-energy values in each
generation in the iterations t=1,2 , . . . ,S in GAs gives the
best implementation of the selection step for each individual
used for the crossover step in iteration t.

VI. GENERALIZATION

The arguments above are now generalized to cover be-
sides �O1� and �O2� also the objectives �O3� to �O5�. To
obtain the probability P�,E

t of a generalized state of having
obtained the energy value E or lower during the execution of
t steps of the genetic algorithm, one first has to introduce
generalized transition probabilities

	̂��,E
t = �
��,�� � if E��� � E

	��
t � otherwise,

� �9�

where 
�� ,�� denotes the Kronecker delta. By construction,
the probability to leave a generalized state with energy value

at most E is zero. Obviously, all values 	̂��,E
t are still linear

in the selection probabilities of individuals into the mating
pool d1,t , d2,t , . . . ,dm,t.

It is now possible to specify a master equation for the
development of a probability distribution p�,E

t to be in the
generalized state � after t time steps,

p�,E
t = 	

���

	̂��,E
t p�,E

t−1 . �10�

If � has an energy value E����E then the random walk is
trapped in this state but if E����E, no state with energy
value E or lower has been obtained so far. The accumulated
probability to be in some generalized state with energy value
at most E is given by

P�,E
t = 	

���,E����E

p�,E
t . �11�

Because � is a finite state space, i.e., ����, there is only
a finite set of possible energy values E���. More specific, the
number of different possible energy values is equivalent to
the different values E��� with ��� and the possible values
are here denoted by Ek� �E1 ,E2 , . . . ,EK� with E1�E2� ¯

�EK. Hence, for each possible value k=1,2 , . . . ,K, the
value P�,Ek

t is clearly defined. The probability that the lowest
so far obtained energy value is exactly Ek is given by

P�,Ek

t = P�,Ek

t − P�,Ek−1

t , �12�

where we introduced an energy value E0�E1 with P�,E0

t

=0 for the convenience of the notation. To address the ob-
jectives �O3� to �O5�, it is not sufficient to multiply the final-
state probabilities with an objective vector g of dim�g�
= ���=L. Instead a tuple

G = �GS,GS−1, . . . ,G1�

of objective vectors
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Gt = ��gE0

t �tr,�gE1

t �tr, . . . ,�gEK

t �tr�tr

with dim�Gt�=L�K+1� has to be defined to express a certain
objective, where gEk

t is the objective vector to be multiplied
with the probability vector pEk

t consisting of all probabilities
p�,Ek

t , ���. First, Eq. �10� can be expressed in matrix no-
tation equivalently, integrating all modified transition prob-

abilities 	̂��,E
t in matrices �̂E

t , controlling the dynamics by

pE
t = �̂E

t · pE
t−1

and combining all possible different energy values
E0 ,E1 ,E2 , . . . ,EK in one equation by

qt =�
pE0

t

pE1

t

]

pEK

t � =�
�̂E0

t−1 0 . . . 0

0 �̂E1

t−1 . . . 0

] ] � ]

0 0 ¯ �̂EK

t−1
� ·�

pE0

t−1

pE1

t−1

]

pEK

t−1�
= �̂t · qt−1, �13�

where dim�qt�=L�K+1�. Assuming that the generalized
states � are ordered according to some sorting in � and the
position of a certain state ��� in this sorting is given by
s=s���, the following equivalence is given:

q���k+s���
t = qLk+s���

t = p�,Ek

t . �14�

Note that the unmodified chain with transition probabilities
�t is contained in this generalized chain at the positions
q1

t , q2
t , . . . ,qL

t . Now it is possible to optimize the tuple of
vectors Q= �qS ,qS−1 , . . . ,q1� according to arbitrary objective
functions G�Q�:

G�Q� = 	
t=1

S

�Gt�tr · qt = 	
t=1

S

	
i=1

L�K+1�

Gi
tqi

t → min. �15�

In this framework, it is possible to optimize according to all
objectives �O1� to �O5�, choosing G adequately. �O1� It is
sufficient to choose Gt=0 for time steps t�S and GS

= �g1 ,0 ,0 , . . . ,0�. �O2� The same holds if g1 is replaced by
g2, i.e., Gt=0 for time steps t�S and GS= �g2 ,0 ,0 , . . . ,0��.
�O3� The objective can be expressed by Gi

t=0 unless i�L,
�iªs−1�i� and E��i�=E1, in which case Gi

t=−1. �O4� To
express this objective, it is sufficient to maximize P�,E1

S ,
which can be achieved by choosing Gt=0 for time steps t
�S but Gi

S=1 for L� i�2L, �i−Lªs−1�i−L� unless
E��i−L�=E1, in which case Gi

S=0. �O5�. Also this objective
can be expressed within the framework, choosing �i� Gt=0
for t�S, �ii� GLk+s���

S =0 for k� �0,1 , . . . ,K−1�, ���, and
E����Ek, and �iii� GLk+s���

S =Ek−Ek+1 for k� �0,1 , . . . ,K
−1�, ��� and GLK+s���

S =EK for ��� and E����Ek.
This can be obtained by expressing the mean final best so

far energy value �EBSF
S � using different values of P�,Ek

S and a
number of given equivalences as described above to obtain
Eq. �15�, which finally has to be minimized,

�EBSF
S � = 	

k=1

K

P�,Ek

S Ek =
�12�

	
k=1

K

�P�,Ek

S − P�,Ek−1

S �Ek

=
�11�

	
k=1

K

Ek 	
���,

E����Ek

p�,Ek

S − 	
k=1

R

Ek 	
���,

E����Ek−1

p�,Ek−1

S

=
�14�

	
k=1

K

Ek 	
���,

E����Ek

qLk+s���
S − 	

k=1

K

Ek 	
���,

E����Ek−1

qL�k−1�+s���
S

= 	
k=1

K

Ek 	
���,

E����Ek

qLk+s���
S − 	

k=0

K−1

Ek+1 	
���,

E����Ek

qLk+s���
S

= 	
k=0

K−1

�Ek − Ek+1� 	
���,

E����Ek

qLk+s���
S + EK 	

���,

E����EK

qLK+s���
S

=
�iii�

	
k=0

K−1

	
���,

E����Ek

GLk+s���
S qLk+s���

S + 	
���,

E����EK

GLK+s���
S qLK+s���

S

=
�ii�

	
k=0

K

	
���

GLk+s���
S qLk+s���

S =
�i�

	
t=1

S

	
i=1

L�K+1�

Gi
tqi

t

=
�15�

	
t=1

S

�Gt�tr · qt = G�Q� → min.

Note that the objectives �O1� to �O5� are linear functions
of the probabilities qi

t, i� �1,2 , . . . ,L�K+1��, and t
� �1,2 , . . . ,S�. Now the following can be proven. Consider-
ing the randomized selection of an individual for the cross-
over operator in iteration t of a genetic algorithm, a rectan-
gular probability distribution over the fittest individuals
according to the energy ranking of all individuals of the cur-
rent population, which is equivalent to a node of the set V as
defined in Sec. IV gives the best implementation of this se-
lection step in each generation, equivalent to the iterations
t=1,2 , . . . ,S.

Again, as in the proof for �O1� and �O2�, the last step S
has to be optimized first. The optimization problem as men-
tioned in Eq. �15� can be also expressed as

G�Q� = 	
t=1

S

�Gt�tr · qt

= 	
t=1

S

�Gt�tr · �̂t · qt−1

= �GS�tr · �̂S · qS−1 + c → min

by Eq. �13�. We again focus on one arbitrary distribution

dcS,S, cs� �1,2 , . . . ,m� to be optimized. The values 	̂��,E
S as

defined in Eq. �9� still depend only linearly on the probabili-
ties 	��

S and hence also only linearly on dcS,S. The possible
distributions according to �A2� and �A3� form a simplex just
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as argued already in the proof in Sec. V and hence, indepen-
dently from the choice of the other distributions di,S , i�cS,
an optimal value of G�Q� can be obtained for a vertex vcS,S

ªvi�V, which is a rectangular distribution as considered in
the threshold-selecting approach.

Because cS has been chosen arbitrary from �1,2 , . . . ,m�,
this holds for all other values of cS as well; i.e., in an optimal
combination of m distributions d1,S , d2,S , . . . ,dm,S, the distri-
butions are equivalent to vertices v1,S , v2,S , . . . ,vm,S�V.
Which of these vertices are chosen depends only on the input
vector qS−1 and this is determined by the pervious iterations
of the algorithm. In stage of the proof, the vector is unknown
because the distributions of the former steps still have to be
fixed. Thus, we again have nm possible combinations of the
distributions di,S , i=1,2 , . . . ,m but at least one of them
must be optimal. Now this construction can be continued in
each of the nm search branches with the step S−1, where the
objective can be determined by considering the m probability
distributions in time step S to be chosen. In step S−1, we
have the minimization

G�Q� = �GS�tr · �̂S�v1,S,v2,S, . . . ,vm,S� · �̂S−1 · qS−2

+ �GS−1�tr · �̂S−1 · qS−2 + c�

= ��GS�tr · �̂S�VS� + �GS−1�tr� · �̂S−1 · qS−2 + c�

= �G̃S−1�tr · �̂S−1 · qS−2 + c� → min.

Here VS denotes the set v1,S , v2,S , . . . ,vm,S of vertices and

�G̃S−1�tr is the implicitly defined objective function for step
S−1. Also in this step, the dependence on each single chosen
distribution di,S−1 , i=1,2 , . . . ,m is only linear and with the
same argument as above there is an optimal combination
d1,S−1 , d2,S−1 , . . . ,dm,S−1 of distributions, equivalent to verti-
ces v1,S−1 , v2,S−1 , . . . ,vm,S−1�V. These chosen vertices de-
pend only on the input vector qS−2.

The remaining steps S−2, S−3, . . . ,1 can be processed
in a similar way and in each step, distributions equivalent to
vertices from V are obtained as optimal solutions. The
equivalent dynamics is visualized in Fig. 3. This completes
the proof. Hence, threshold selecting is also for the objec-
tives �O3� to �O5� an optimal strategy.

VII. CONCLUSIONS

The problem of selecting individuals from the population
of a GA for crossover based on their energy values has been

considered by applying the master equation to describe the
corresponding dynamics as a random walk in the state space
and some straightforward assumptions on the probability dis-
tributions for selecting the individuals in a certain generation
have been formulated. Our goal was to find transition prob-
abilities assuring the optimal control of the evolutionary de-
velopment in the GA. A rectangular distribution of selection
probabilities is provably optimal, provided that the perfor-
mance is measured by a linear function in modified state
probabilities, which includes many reasonable choices for
the objective function.

The proof above is based on the fundamental theorem of
linear programming, which states that a linear function de-
fined on a simplex reaches its minimum at a vertex. How-
ever, the proof does not state that all optimal selection strat-
egies in GAs are rectangular. Other strategies may do equally
well but not better.

If there exists an optimal strategy other than threshold
selecting, it follows that an edge or a face of the described
simplex gives equivalent results. Thus, it seems unlikely that
a strictly monotonic distribution can be optimal �15�, which
would imply that all the vertices in V perform equally well.

As presented, the proof can be applied for any crossover
procedure in GAs with independent probability distributions
for the selection of the crossover individuals and for both,
the generation replacement model, where the mating pool
has size n for populations of size n, and also for the steady-
state replacement model, where only some individuals are
replaced �34�. Integrating a mutation operator, the same as
for crossover holds as described in Sec. III.

Currently, the knowledge that the best performance can be
achieved using threshold selecting is only of limited use,
since the cutoff ranks � to be used are not known a priori.
Therefore, it would be interesting to carry out numerical ex-
periments, comparing distributions empirically. Furthermore,
it is reasonable to introduce a schedule on the cutoff rank �,
narrowing the rectangular distribution during the optimiza-
tion process and thus increasing the evolutionary pressure
gradually. Moreover, it would be interesting to obtain also
theoretical progress concerning the choice of one of the pos-
sible rectangular distributions or to reduce the choice to a
certain assortment.

Another future research task is the investigation of the
influence caused by transformations of the energy function as
introduced in �35�.

q0 Γ̂1 Γ̂tΓ̂2

Control

Benchmark

qS min

Γ̂S

d1,S ,d2,S , . . . ,dm,Sd1,t,d2,t, . . . ,dm,td1,2,d2,2, . . . ,dm,2d1,1,d2,1, . . . ,dm,1

+ GS ·q t−1+ G2·G(Q) = G1·q1 qS−1q t + . . . ·q2 + . . . · + Gt·

FIG. 3. Dynamic optimization process, transforming vectors qt−1 in qt depending on the distributions di,t , i=1,2 , . . . ,m for the time steps
t=1,2 , . . . ,S.
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